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Abstract—Machine learning techniques for computer vision applications like object recognition, scene classification, etc., require a

large number of training samples for satisfactory performance. Especially when classification is to be performed over many categories,

providing enough training samples for each category is infeasible. This paper describes new ideas in multiclass active learning to deal

with the training bottleneck, making it easier to train large multiclass image classification systems. First, we propose a new interaction

modality for training which requires only yes-no type binary feedback instead of a precise category label. The modality is especially

powerful in the presence of hundreds of categories. For the proposed modality, we develop a Value-of-Information (VOI) algorithm that

chooses informative queries while also considering user annotation cost. Second, we propose an active selection measure that works

with many categories and is extremely fast to compute. This measure is employed to perform a fast seed search before computing

VOI, resulting in an algorithm that scales linearly with dataset size. Third, we use locality sensitive hashing to provide a very fast

approximation to active learning, which gives sublinear time scaling, allowing application to very large datasets. The approximation

provides up to two orders of magnitude speedups with little loss in accuracy. Thorough empirical evaluation of classification accuracy,

noise sensitivity, imbalanced data, and computational performance on a diverse set of image datasets demonstrates the strengths of

the proposed algorithms.

Index Terms—Active learning, scalable machine learning, multiclass classification, object recognition

Ç

1 INTRODUCTION

REAL-WORLD classification applications such as object
recognition and classification typically require large

amounts of annotated training data due to the tremendous
amount of variation in image appearance. Considering the
variety and scale of images on the web, training satisfactory
classifiers is increasingly difficult using traditional super-
vised learning techniques. At the same time, in most image
classification problems, we typically have a large number of
unlabeled data. Intelligently exploiting the large amounts of
data is a challenging problem. To this end, there has been
recent interest in active learning, wherein classifiers are
trained interactively—the system queries the user for
annotations on “informative samples” instead of accepting
annotation passively. Previous work on binary classification
[39] and, more recently, even multiclass classification [17],
[20], [23], [43] has shown that such an active learning
approach can reduce the amount of training data required
compared to supervised passive learning.

Even though multiclass active learning methods success-
fully reduce the amount of training data required, they can

be labor intensive from a user interaction standpoint for the
following reasons:

1. For each unlabeled image queried for annotation, the
user has to sift through many categories to input the
precise one. Especially for images, providing input
in this form can be difficult and sometimes im-
possible when a huge (or unknown) number of
categories are present.

2. The time and effort required increase with an
increase in the number of categories.

3. The interaction is prone to mistakes in annotation.
4. It is not easily amenable to distributed annotation as

all users need to be consistent in labeling. The
distributed annotation aspect is of increasing im-
portance in exploiting distributed labeling resources
such as Amazon Mechanical Turk [1], [37].

Apart from the above, current active learning algorithms
are computationally intensive, which limits their applic-
ability to datasets of hundreds or a few thousand samples.
At the same time, image datasets are ever increasing in their
size and the image variety—it is not uncommon to have tens
of thousands of image classes [7], [40]. In order to design
systems that are practical at larger scales, it is essential to
allow easier modes of annotation and interaction for the
user, along with algorithms that are scalable. Motivated by
this, our contributions in this paper are the following:

. We develop a multiclass active learning setup that
requires only binary user feedback (yes/no). Our
system generalizes interaction since it can also
accept precise category annotation as in the tradi-
tional setting, if available for any images. We
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propose a Value-of-Information (VOI)-based active
selection framework for the binary interaction
modality.

. We propose an efficient measure to compute
uncertainty (uncertainty sampling) of examples for
query selection. Unlike previous work, the selection
measure works directly in the multiclass setting,
instead of actively selecting samples from various
binary classifiers separately.

. We propose extremely efficient approximations to
active learning that scale sublinearly with dataset
size. Scaling is of utmost importance toward using
active learning for current applications, which are at
a substantially larger scale than what most algo-
rithms are designed for.

. Unlike most previous methods, the proposed system
is designed to handle and incorporate unseen
categories as it learns (i.e., we do not assume a
training set containing samples from all classes to
begin with). This aspect is particularly important in
real systems, where it is unlikely to have training
examples from all categories at the outset.

. The proposed system is empirically shown to handle
many frequent issues that plague real data: class
population imbalance owing to largely varying
number of examples across categories, label noise
occurring due to human training errors, or noisy
acquisition processes.

Due to the ease of interaction of the proposed system, easy
scalability, allowing the incorporation of unseen categories,
and dealing with noise and imbalance, we believe this paper
demonstrably shows the effectiveness of active learning for
training very large-scale image classification systems.

1.1 Ease of Interaction

In order to quantitatively compare the two interaction
modalities, we conducted experiments on 20 users with
50-class and 100-class data, obtained from the Caltech-101
object categories dataset [12]. Each user was asked to
interact with two modalities, as shown in Fig. 1: 1) giving

category labels (out of a given set of labels) to randomly
queried images, as is typically used for training, and
2) giving yes/no responses to two images based on whether
they came from the same class. We measured interaction
time and the number of errors made in both modalities by
each user, along with an overall satisfaction score from 1
through 5, indicating the ease of interaction experienced
(1 being the easiest). Table 1 summarizes the results.

First, it can be seen that binary feedback (BF) requires far
less user time than giving multiclass feedback (MCF).
Although BF in principle also provides lesser information
than MCF, we demonstrate in our experiments that the BF
interaction model still achieves superior classification
accuracy than MCF with the same expenditure of user
time. Second, as seen in the table, MCF has much more
noise associated—users make many more errors when
sifting through potential categories and finding the correct
one. In contrast, BF is much cleaner since it is much easier to
simply look at two images and determine whether they
belong to the same class or not. Third, the interaction time
and annotation errors in MCF increase with the number of
categories. This is expected, as annotation requires brows-
ing over all possible classes.

In contrast, in the BF model there is no observed increase
in user time with increasing number of categories. This
aspect is particularly appealing, as the main objective is to
scale well to larger problems with potentially thousands of
classes. Four, as seen from the satisfaction scores, users are
much more satisfied with the overall interaction in BF since
it does not need browsing through many images and can be
done quickly. Apart from the above advantages, distributed
annotation across many trainers is easily possible in the BF
model. Also, it is straightforward to allow exploration of the
data when new categories continuously appear (as opposed
to a setting often used previously wherein the initial
training set is created by including examples from all
classes [15]), or when notions of categories change with
time. In summary, binary feedback provides an extremely
appealing interaction model for large problems with many
classes.

2 RELATED WORK

Many problems in computer vision suffer from the fact that
they require substantial amounts of training data for
performing accurate classification. As such, active learning
has received increasing interest in the computer vision
community. In the following, we review relevant work on
object recognition and active learning.

Tong and Chang [38] propose active learning for SVM in
a relevance feedback framework for image retrieval. Their
approach relies on the margins for unlabeled examples for
binary classification. Tong and Koller [39] use an active
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Fig. 1. Top row: Sample interaction in traditional multiclass active
learning approaches. The user needs to input a category name/number
for the query image from a large dataset possibly consisting of hundreds
of categories. Bottom row: The binary interaction model we propose.
The user only needs to say whether or not the query image and the
sample image belong to the same category.

TABLE 1
Comparing the Two Interaction Modalities



learning method to minimize the version space1 at each
iteration. However, both these approaches target binary
classification.

Gaussian processes (GP) have been used for object
categorization by Kapoor et al. [23]. They demonstrate an
active learning approach through uncertainty estimation
based on GP regression, which requires OðN3Þ computa-
tions, cubic in the number of training examples. They use
one-versus-all SVM formulation for multiclass classifica-
tion, and select one example per classifier at each iteration
of active learning.

Holub et al. [17] propose an entropy (EP)-based active
learning method for object recognition. Their method selects
examples from the active pool, whose addition to the
training set minimizes the expected entropy of the system. On
the other hand, our VOI method computes the expected
improvement in classification accuracy, while also attempt-
ing to minimize the expected user annotation cost. The
entropy-based approach proposed in [17] requires Oðk3N3Þ
computations, where N is the number of examples in the
active pool and k is the number of classes. Qi et al. [34]
demonstrate a multilabel classification method that em-
ploys active selection along two dimensions—examples and
their labels. Label correlations are exploited for selecting the
examples and labels to query the user.

Kapoor et al. [24] propose a VOI type method for semi-
supervised learning which is similar to the one proposed
here. Our approach, however, proposes a simpler binary
interaction model for multiclass problems, along with an
associated efficient means to compute VOI on the binary
model.

For handling multiple image selection at each iteration,
Hoi et al. [16] introduced batch mode active learning with
SVMs. Since their method is targeted toward image
retrieval, the primary classification task is binary—to
determine whether an image belongs to the class of the
query image. Active learning with uncertainty sampling has
been demonstrated by Li and Sethi [28], in which they use
conditional error as a metric of uncertainty and work with
binary classification.

For a comprehensive survey on various algorithms and
applications of active learning, see [36]. Although there has
been a lot of work on reducing the number of training
examples for classification, the interaction and computa-
tional complexity of active learning has been more or less
overlooked, especially for classification tasks involving
large number of categories. As mentioned previously,
addressing this is the primary contribution of the paper.

2.1 Learning Setup

Fig. 2 shows a block schematic of the proposed active
learning setup. The active pool consists of a large number of
unlabeled images from which the active learning algorithm
can select images to query the user. The training set consists
of images for which category labels are known and can be
used for training the classifier. Throughout the paper, we
use Support Vector Machines (SVM) as the underlying
classification algorithm since it provides state-of-the-art

performance on the datasets used for evaluation. For the
multiclass case, one-versus-one SVM (classifiers trained for
each pair of classes) are used.

In the traditional multiclass active learning setting, an
unlabeled image (query image) needs to be selected for user
annotation. In our case, however, since user input is only
binary, we also require an image from a known category to
show the user for comparison. Selecting this image from the
training set is a new aspect of active selection that our
framework requires. We refer to this comparison image from
a known category as the “sample image.” We focus on query
and sample selection algorithms in this paper—denoted by
white boxes with red borders in Fig. 2.

Our approach for query as well as sample selection is
probabilistic, i.e., based on the current training set, class
membership probability estimates are obtained for the
images in the active pool. We use Platt’s method [29], [33]
to estimate binary probabilities based on the SVM
margins, combined with pairwise coupling [42] with
one-versus-one SVM for multiclass probability estimation
on the unlabeled images. Probability estimation details are
given in Section 4.1.

In Fig. 2, the query selection algorithm selects a query
image from the active pool using the estimated class
membership probabilities. Based on the estimated member-
ship probabilities for the query image, the sample selection
algorithm selects a sample image from the current training
set. The query-sample pair is shown to the user for
feedback. If a “match” response is obtained, indicating that
the query and sample images belong to the same category,
the query image is added to the current training set along
with its category label. If a “no-match” response is obtained,
the sample selection algorithm is again invoked to ask for a
different sample image.

This process goes on until either the label for the query
image is obtained (with a “match” response) or until the
query image does not match any of the categories in the
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Fig. 2. Block schematic of the active learning setting. Our focus in this
paper is on the query and sample selection algorithms—depicted in
white boxes with red borders (see text for details).

1. Version space is the subset consisting of all hypotheses that are
consistent with the training data [30].



training set. In the latter case, a new category label is initiated
and assigned to the query image.2 Through such a mechan-
ism, the learning process can be started with very few
training images initially chosen at random (seed set). As the
process continues, the active selection algorithm requires far
fewer queries than random selection to achieve similar
classification rate on a separate test set. Note that the system
is also able to exploit feedback in terms of precise category
annotation (as in the typical setting), if available. Binary
feedback, however, generalizes the applicability and allows
learning in new unknown environments for exploration.

Binary input has been employed previously in the
context of clustering data by asking the user for pairwise
must-link and cannot-link constraints [3]. This approach can
be adapted to the active learning framework by choosing
even the sample images from unlabeled data and perform-
ing a (unsupervised) clustering step before user annotation.
However, in our observation, such an approach was prone
to noise due to unsupervised clustering, which can lead to
an entire cluster of incorrectly labeled training data. Noise
reduction in the preclustering approach is an interesting
future work direction. On the other hand, in this paper (and
the preliminary version [22]), we demonstrate empirically
that the setup we employ is robust to labeling noise.

3 THE ACTIVE LEARNING METHOD

There are two parts to binary feedback active learning: 1) to
select a query image from the active pool, and 2) to select a
sample image from a known category to be shown to the
user along with the query image.

3.1 Query Selection

The goal here is to query informative images, i.e., images
that are likely to lead to an improvement in future
classification accuracy. We use the Value of Information
framework [24], [25], [41] employed in decision theory for
query selection in this paper. The broad idea is to select
examples based on an objective function that combines the
misclassification risk and the cost of user annotation.
Consider a risk matrix M 2 IRk�k for a k-class problem.
The entry Mij in the matrix indicates the risk associated
with misclassifying an image having true label i as
belonging to class j. Correct classification incurs no risk
and hence the diagonal of M is zero, Mii ¼ 0, 8i.

Denote the estimated class membership distribution for
an unlabeled image x as px ¼ fp1

x; . . . ; pkxg. Note that since
the true class membership distribution for x is unknown,
the actual misclassification risk cannot be computed—we
instead find the expected misclassification risk for x as

RfxgL ¼
Xk

i¼1

Xk

j¼1

Mij �
�
pixjL

�
�
�
pjxjL

�
; ð1Þ

where L is the set of labeled examples based on which the
probabilities are estimated. Consider that the test set T
consists of N images x1; . . . ; xN . The total expected risk over
the test set (normalized by size) is

RL ¼
1

jT j
X

x2T

Xk

i¼1

Xk

j¼1

Mij �
�
pixjL

�
�
�
pjxjL

�
: ð2Þ

Note that the above expression requires that the test set be
available while computing the total risk. Typically the test
set is not available beforehand, and we can use the images
in the active pool A for computing the expected risk.
Indeed, most work on classification uses surrogates to
estimate the misclassification risk in the absence of the test
set. In many scenarios, the entire available set of unlabeled
images is used as the active pool and is typically very large;
thus an estimate of risk on the active pool is fairly reliable.

Now, if y 2 A is added to the labeled training set by
acquiring its label from the user, the expected reduction in
risk on the active pool can be computed as

RL �RL0 ¼
1

jAj
X

x2A

Xk

i¼1

Xk

j¼1

Mij �
�
pixjL

�
�
�
pjxjL

�

� 1

jA0j
X

x2A0

Xk

i¼1

Xk

j¼1

Mij �
�
pixjL0

�
�
�
pjxjL0

�
;

ð3Þ

where L0 ¼ L [ fyg, andA0 ¼ A n fyg. The above expression
captures the value of querying y and adding it to the labeled
set. However, we also need to consider the cost associated
with obtaining feedback from the user for y. Assume that the
cost of obtaining user annotation on y is given by CðyÞ. In our
framework, we wish to actively choose the image that
reduces the cost incurred while maximizing the reduction in
misclassification risk. Assuming risk reduction and annota-
tion cost are measured in the same units, the joint objective
that represents the VOI for a query y is

V ðyÞ ¼ RL �RL0 � CðyÞ: ð4Þ

The term RL in the above equation is independent of y, the
example to be selected for query. Therefore, active selection
for maximizing VOI can be expressed as a minimization

y� ¼ argmin
y2A

RL0 þ CðyÞ: ð5Þ

Note that the above framework can utilize any notions of
risk and annotation cost that are specific to the domain. For
instance, we can capture the fact that misclassifying
examples belonging to certain classes can be more expen-
sive than others. Such a notion could be extremely useful
for classifying medical images so as to determine whether
they contain a potentially dangerous tumor. Misclassifying
a “clean” image as having a tumor only incurs the cost of
the doctor verifying the classification. However, misclassi-
fying a “tumor image” as clean could be potentially fatal in
a large dataset wherein the doctor cannot manually look at
all the data. In such scenarios, the different misclassification
risks could be suitably encoded in the matrix M.

As in most work on active learning, our evaluation is
based on classification accuracy. As such, we employ equal
misclassification cost so that Mij ¼ 1; for i 6¼ j.

3.2 Sample Selection

Given a query image, the sample selection algorithm should
select sample images so as to minimize the number of
responses the user has to provide. In our framework, the
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2. Initiating a new category can require many user responses when many
classes are present—we later discuss how to overcome this through a fast
new class initialization step along with cluster merging.



sample images belong to a known category; the problem of
selecting a sample image then reduces to the problem of
finding a likely category for the query image from which a
representative image can be chosen as the sample image.
When presented with a query image and a sample image,
note that a “match” response from the user actually gives us
the category label of the query image itself! A “no match”
response does not provide much information. Suppose that
the dataset consists of 100 categories. A “no match”
response from the user to a certain query-sample image
pair still leaves 99 potential categories to which the query
image can belong. Based on this understanding, the goal of
selecting a sample image is to maximize the likelihood of a
“match” response from the user.

Selecting a sample image (category) can be accomplished
by again using the estimated class membership probabil-
ities for the selected query image. For notational simplicity,
assume that the query image distribution fp1; . . . ; pkg is in
sorted order such that p1 � p2 � � � � � pk. The algorithm
proceeds as follows: Select a representative sample image
from class 1 and obtain user response. As long as a “no
match” response is obtained for class i� 1, select a sample
image from class i to present the user. This is continued
until a “match” response is obtained. Through such a
scheme, sample images from the more likely categories are
selected earlier in the process in an attempt to minimize the
number of user responses required.

3.2.1 Annotation Cost

In the binary feedback setting, our experiments indicated
that it is reasonable to assume that each binary comparison
requires a constant cost (time) for annotation. Thus, for each
query image, the cost incurred to obtain the class label is
equal to the number of binary comparisons required. Since
this number is unknown, we compute its expectation based
on the estimated class membership distribution instead. If
the distribution is assumed to be in sorted order as above,
the expected number of user responses to get a “match”
response is

CðxÞ ¼ px1 þ
Xk

j¼2

�
1� px1

�
. . .
�
1� pxj�1

�
� pxj � j; ð6Þ

which is also the user annotation cost. We can scale the
misclassification risk (by scaling M) with the real-world
cost incurred to find the true risk, which is in the same units
as annotation cost. Here, we choose the true risk as the
expected number of misclassifications in the active pool, and
compute it by scaling M with the active pool size. Along
with our choice of CðxÞ, this amounts to equating the cost of
each binary input from the user to every misclassification,
i.e., we can trade one binary input from the user for
correctly classifying one unlabeled image.

3.3 Stopping Criterion

The above VOI-based objective function leads to an
appealing stopping criterion—we can stop whenever the
maximum expected VOI for any unlabeled image is
negative, i.e., argmaxx2A V ðxÞ < 0. With our defined notions
of risk and cost, negative values of VOI indicate that a single
binary input from the user is not expected to reduce the

number of misclassifications by even one; hence querying is
not worth the information obtained. It should be noted that
different notions of real-world risk and annotation cost
could be employed instead if specific domain knowledge is
available. The selection and stopping criteria directly
capture the particular quantities used.

3.4 Initiating New Classes

Many active learning methods make the restrictive assump-
tion that the initial training set contains examples from all
categories [15]. This assumption is unrealistic for most real
problems since the user has to explicitly construct a training
set with all classes, defeating our goal of reducing super-
vision. Also, if a system is expected to operate over long
periods of time, handling new classes is essential. Thus, we
start with small seed sets, and allow dynamic addition of
new classes. In the sample selection method described
above, the user is queried by showing sample images until a
“match” response is obtained. However, if the query image
belongs to a category that is not present in the current
training set, many queries will be needed to initiate a new
class.

Instead, we initiate a new class when a fixed small
number (say 5) of “no-match” responses are obtained. With
good category models, the expected distributions correctly
capture the categories of unlabeled images—hence, “no-
match” responses to the few most likely classes often
indicates the presence of a previously unseen category.
However, it may happen that the unlabeled image belongs
to a category present in the training data. In such cases,
creating a new class and assigning it to the unlabeled image
results in overclustering. This is dealt with by agglomera-
tive clustering (cluster merging), following the min-max cut
algorithm [8], along with user input.

The basic idea in agglomerative clustering is to iteratively
merge two clusters that have the highest similarity (linkage
value) lðCi; CjÞ. For min-max clustering, the linkage func-
tion is given by lðCi; CjÞ ¼ sðCi; CjÞ=ðsðCi; CiÞsðCj; CjÞÞ,
where s indicates a cluster similarity score: sðCi; CjÞ ¼P

x2Ci
P

y2Cj Kðx; yÞ. Here, K is the kernel function that
captures similarity between two objects x and y (the same
kernel function is also used for classification with SVM).

In our algorithm, we evaluate cluster linkage values after
each iteration of user feedback. If the maximum linkage
value (indicating cluster overlap) is for clusters Ci and Cj
and is above a threshold of 0.5, we query the user by
showing two images from Ci and Cj. A “match” response
results in merging of the two clusters. Note that our setting
is much simpler than the unsupervised clustering setting
since we have user feedback available. As such, the
method is relatively insensitive to the particular threshold
used, and lesser noise is encountered. Also, note that we do
not need to compute the linkage values from scratch at each
iteration—only a simple incremental computation is
required. In summary, new classes are initiated quickly
and erroneous ones are corrected by cluster merging with
little user feedback.

3.5 Computational Considerations

The computational complexity of each query iteration in our
algorithm (Fig. 3) isOðN2k3Þ, with an active pool of sizeN and
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k classes. Although it works well for small problems, the

cost can be impractical at larger scales. In the following, we

propose a new uncertainty measure for active selection in

multiclass scenarios that allows extremely fast computation.

The measure can be seen as one way to define margins in

the multiclass case. We will then use the proposed selection

measure to seed the search by restricting the number of

examples over which VOI has to be computed.

4 MULTICLASS ACTIVE SELECTION MEASURE

Our approach follows the idea of uncertainty sampling [4],

[13], wherein examples on which the current classifier is

uncertain are selected to query the user. Distance from the

hyperplane for margin-based classifiers has been used as a

notion of uncertainty in previous work. However, this does

not easily extend to multiclass classification due to the

presence of multiple hyperplanes. We use a different notion

of uncertainty that is easily applicable to a large number of

classes. The uncertainty can be obtained from the class

membership probability estimates for the unlabeled exam-

ples as output by the multiclass classifier. In the case of a

probabilistic model, these values are directly available. For

other classifiers, such as SVM, we need to first estimate

class membership probabilities of the unlabeled examples.

In the following, we outline our approach for estimating the

probability values for multiclass SVM. However, such an

approach for estimating probabilities can be used with

many other nonprobabilistic classification techniques also.

4.1 Probability Estimation

In order to obtain class membership probability estimates
for unlabeled examples in the active pool, we follow the
approach proposed by Lin et al. [29], which is a modified
version of Platt’s method to extract probabilistic outputs
from SVM [33].

The basic idea is to approximate the class probability
using a sigmoid function. Suppose that xi 2 IRn are the
feature vectors, yi 2 f�1; 1g are their corresponding labels,
and fðxÞ is the decision function of the SVM which can be
used to find the class prediction by thresholding. The
conditional probability of class membership P ðy ¼ 1jxÞ can
be approximated using

pðy ¼ 1jxÞ ¼ 1

1þ expðAfðxÞ þBÞ ; ð7Þ

where A and B are parameters to be estimated. Maximum
likelihood estimation is used to solve for the parameters. In
order to generate probability estimates from the binary
classifiers described above, pairwise coupling [42] was
used. Please see [21] for details on the probability
estimation method. We used the toolbox LIBSVM [5] that
implements the SVM for classification and probability
estimation in the multiclass problem.

4.2 Pairwise Classification

As shown above, we use pairwise SVM for classification.
Consequently, Oðk2Þ classifiers are required for a k class
problem. Even though training in the pairwise classifiers
setting appears to be computationally inefficient compared
to the one-versus-all setting, which requires k classifiers,
pairwise classifiers can in fact be equally efficient or,
occasionally, even more so than the one-versus all setting
for the following reasons. In the one-versus-all setting, we
need to train k classifiers with N (training set sample size)
data samples each, assuming no sampling approximations.
On the other hand, assuming relatively equal distribution of
samples across all the classes, each classifier in the pairwise
setting is trained with about 2N=k samples. Further noting
that SVM training scales approximately quadratically with
the training set size, the pairwise setting often results in
faster training on the entire dataset. Along with faster
training, pairwise classifiers result in better prediction in
our experiments. Computational efficiency of pairwise
classification has also been demonstrated previously in
[18], and its superior classification performance was noted
by Duan and Keerthi [9].

4.3 Entropy as Uncertainty

Each labeled training example belongs to a certain class,
denoted by y 2 f1; . . . ; kg. However, we do not know true
class labels for examples in the active pool. For each
unlabeled example, we can consider the class membership
variable to be a random variable denoted by Y . We have a
distribution p for Y of estimated class membership
probabilities computed in the way described above.
Entropy is a measure of uncertainty of a random variable.
Since we are looking for measures that indicate uncertainty
in class membership Y , its discrete entropy is a natural
choice. The discrete entropy of Y can be estimated by
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HðY Þ ¼ �
Xk

i¼1

pi logðpiÞ: ð8Þ

Higher values of entropy imply more uncertainty in the
distribution; this can be used as an indicator of uncertainty of
an example. If an example has a distribution with high
entropy, the classifier is uncertain about its class membership.

The algorithm proceeds in the following way: At each
round of active learning, we compute class membership
probabilities for all examples in the active pool. Examples
with the highest estimated value of discrete entropy are
selected to query the user. User labels are obtained and the
corresponding examples are incorporated in the training set
and the classifier is retrained. As will be seen in Section 4.8,
active learning through entropy-based selection outper-
forms random selection in some cases.

4.4 Best-versus-Second Best (BvSB)

Even though EP-based active learning is often better than
random selection, it has a drawback. A problem of the EP
measure is that its value is heavily influenced by probability
values of unimportant classes. See Fig. 4 for a simple
illustration. The figure shows estimated probability values
for two examples on a 10-class problem. The example on the
left has a smaller entropy than the one on the right. However,
from a classification perspective, the classifier is more
confused about the former since it assigns close probability
values to two classes. For the example in Fig. 4b, small
probability values of unimportant classes contribute to the
high entropy score, even though the classifier is much more
confident about the classification of the example. This
problem becomes even more acute when a large number of
classes are present. Although entropy is a true indicator of
uncertainty of a random variable, we are interested in a more
specific type of uncertainty relating only to classification
among the most confused classes (the example is virtually
guaranteed to not belong to classes having a small
probability estimate).

Instead of relying on the entropy score, we take a more
greedy approach to account for the problem mentioned.
We consider the difference between the probability values of
the two classes having the highest estimated probability

value as a measure of uncertainty. Since it is a comparison of
the best guess and the second best guess, we refer to it as the
BvSB approach [21]. Such a measure is a more direct way of
estimating confusion about class membership from a
classification standpoint. Using the BvSB measure, the
example on the left in Fig. 4 will be selected to query
the user. As mentioned previously, confidence estimates are
reliable in the sense that classes assigned low probabilities
are very rarely the true classes of the examples. However,
this is only true if the initial training set size is large enough
for good probability estimation. In our experiments, we start
from as few as two examples for training in a 100 class
problem. In such cases, initially the probability estimates are
not very reliable, and random example selection gives
similar results. As the number of examples in the training
set grows, active learning through BvSB quickly dominates
random selection by a significant margin.

4.5 Another Perspective

One way to see why active selection works is to consider
the BvSB measure as a greedy approximation to entropy for
estimating classification uncertainty. We describe another
perspective that explains why selecting examples in this
way is beneficial. The understanding crucially relies on our
use of the one-versus-one approach for multiclass classifi-
cation. Suppose that we wish to estimate the value of a
certain example for active selection. Say its true class label
is l (note that this is unknown when selecting the example).
We wish to find whether the example is informative, i.e., if
it will modify the classification boundary of any of the
classifiers, once its label is known. Since its true label is l, it
can only modify the boundary of the classifiers that
separate class l from the other classes. We call these
classifiers as those in contention, and denote them by Cl ¼
fCðl;iÞj i ¼ 1; . . . ; k; i 6¼ lg, where Cði;jÞ indicates the binary
classifier that separates class i from class j. Furthermore, in
order to be informative at all, the selected example needs to
modify the current boundary (be a good candidate for a
new support vector—as indicated by its uncertainty).
Therefore, one way to look at multiclass active selection
for one-versus-one SVMs is the task of finding an example
that is likely to be a support vector for one of the classifiers in
contention, without knowing which classifiers are in
contention. See Fig. 5 for an illustration.

Say that our estimated probability distribution for a
certain example is denoted by p, where pi denotes the
membership probability for class i. Also suppose that the
distribution p has a maximum value for class h. Based on
current knowledge, the most likely set of classifiers in
contention is Ch. The classification confidence for the
classifiers in this set is indicated by the difference in the
estimated class probability values, ph � pi. This difference is
an indicator of how informative the particular example is to
a certain classifier. Minimizing the difference ph � pi or,
equivalently, maximizing the confusion (uncertainty), we
obtain the BvSB measure. This perspective shows that our
intuition behind choosing the difference in the top two
probability values of the estimated distribution has a valid
underlying interpretation—it is a measure of uncertainty for
the most likely classifier in contention. Also, the BvSB measure
can then be considered to be an efficient approximation for
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Fig. 4. An illustration of why entropy can be a poor estimate of
classification uncertainty. The plots show estimated probability distribu-
tions for two unlabeled examples in a 10 class problem. In (a), the
classifier is highly confused between classes 4 and 5. In (b), the
classifier is relatively more confident that the example belongs to class
4, but is assigned higher entropy. The entropy measure is influenced by
probability values of unimportant classes.



selecting examples that are likely to be informative, in terms
of changing classification boundaries.

4.6 Binary Classification

For binary classification problems, our method reduces to
selecting examples closest to the classification boundary,
i.e., examples having the smallest margin. In binary
problems, the BvSB measure finds the difference in class
membership probability estimates between the two classes.
The probabilities are estimated using (7), which relies on the
function value fðxÞ of each unlabeled example. Further-
more, the sigmoid fit is monotonic with the function
value—the difference in class probability estimates is larger,
for examples, away from the margin. Therefore, our active
learning method can be considered to be a generalization of
binary active learning schemes that select examples having
the smallest margin.

4.7 Computational Cost

There are two aspects to the cost of active selection. One
is the cost of training the SVM on the training set at each
iteration. Second is probability estimation on the active
pool and selecting examples with the highest BvSB score.
Since we use one-versus-one SVM, we need to train
Oðk2Þ classifiers for k classes. As the essence of active
learning is to minimize training set sizes through intelligent
example selection, it is also important to consider the cost of
probability estimation and example selection on the
relatively much larger active pool. The first cost comes
from probability estimation in binary SVM classifiers. The
estimation is efficient since it is performed using Newton’s
method with backtracking line search that guarantees
quadratic rate of convergence. Given class probability
values for binary SVMs, multiclass probability estimates
can be obtained in OðkÞ time per example [42]. With
N examples in the active pool, the entire BvSB computation
scales as OðNk2Þ.

4.8 Experiments with BvSB

In this section, we show experiments demonstrating the
ability of the BvSB measure to select informative examples

for query. Note that this section reports results only using
this uncertainty measure and not VOI. Later, we incorpo-
rate BvSB as an approximation to reduce the computational
expense of VOI computation. We demonstrate results on
standard image datasets available from the UCI repository
[2], the Caltech-101 dataset of object categories, and a
dataset of 13 natural scene categories. All the results show
significant improvement owing to active example selection.
Table 2 shows a summary of datasets used and their details.
For choosing the kernel, we ran supervised learning
experiments with linear, polynomial, and Radial Basis
Function (RBF) kernels on a randomly chosen training set,
and picked the kernel that gave the best classification
accuracy averaging over multiple runs.

4.8.1 Reduction in Training Required

In this section, we perform experiments to quantify the
reduction in the number of training examples required for
BvSB to obtain similar classification accuracy as random
example selection. For each round of active learning, we find
the number of rounds of random selection to achieve the same
classification accuracy. In other words, fixing the classifica-
tion accuracy achieved, we measure the difference in the
training set size of both methods and report the correspond-
ing training rounds in Table 3. The table shows that active
learning achieves a reduction of about 50 percent in the
number of training examples required, i.e., it can reach near
optimal performance with 50 percent fewer training exam-
ples. Table 3 reports results for the USPS dataset; however,
similar results were obtained for the Pendigits dataset and the
Letter dataset.

An important point to note from Table 3 is that active
learning does not provide a large benefit in the initial
rounds. One reason for this is that all methods start with the
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TABLE 2
Dataset Details

# pool = active pool size, # test = test set size.

Fig. 5. Illustration of one-versus-one classification (classes that each
classifier separates are noted). Assuming that the estimated distribution
for the unlabeled example (shown as a blue disk) peaks at “Class 4,” the
set of classifiers in contention is shown as red lines. BvSB estimates the
highest uncertainty in this set—uncertainty of other classifiers is
irrelevant.

TABLE 3
Percentage Reduction in the Number of Training Examples

Provided to the Active Learning Algorithm
to Achieve Classification Accuracy Equal to

or More than Random Example Selection on the USPS Dataset



same seed set initially. In the first few rounds, the number
of examples actively selected is far fewer compared to the
seed set size (100 examples). Actively selected examples
thus form a small fraction of the total training examples,
explaining the small difference in classification accuracy of
both methods in the initial rounds. As the number of
rounds increases, the importance of active selection
becomes clear, explained by the reduction in the amount
of training required to reach near-optimal performance.

4.9 Exploring the Space

In many applications, the number of categories to be
classified is extremely large, and we start with only a few
labeled images. In such scenarios, active learning has to
balance two often conflicting objectives—exploration and
exploitation. Exploration in this context means the ability to
obtain labeled images from classes not seen before. Exploita-
tion refers to classification accuracy on the classes seen so far.
Exploitation can conflict with exploration since, in order to
achieve high classification accuracy on the seen classes, more
training images from those classes might be required while
sacrificing labeled images from new classes. In the results so
far, we show classification accuracy on the entire test data
consisting of all classes—thus good performance requires a
good balance between exploration and exploitation. Here,
we explicitly demonstrate how the different example
selection mechanisms explore the space for the Caltech-101
dataset that has 102 categories. Fig. 6 shows that the BvSB
measure finds newer classes almost as fast as random
selection, while achieving significantly higher classification
accuracy than random selection. Fast exploration of BvSB
implies that learning can be started with labeled images from
very few classes and the selection mechanism will soon
obtain images from the unseen classes. Interestingly, EP-
based selection explores the space poorly.

4.9.1 Scene Recognition

Further, we performed experiments for the application of
classifying natural scene categories on the 13 scene
categories dataset [11]. GIST image features [31] that
provide a global representation were used. Results are
shown in Fig. 7. The figure shows accuracy improvement
(active selection accuracy-random selection accuracy) per
class after 30 BvSB-based active learning rounds. Note that

although we do not explicitly minimize redundancy among
images, active selection leads to significant improvements
even when as many as 20 images are selected at each active
learning round.

4.9.2 Which Examples Are Selected?

In Fig. 8, we show example images from the USPS dataset
and their true labels. The top row images were confusing
for the classifier (indicated by their BvSB score) and were
therefore selected for active learning at a certain iteration.
The bottom row shows images on which the classifier was
most confident. The top row has more confusing images
even for the human eye, and ones that do not represent
their true label well. We noticed that the most confident
images (bottom row) consisted mainly of the digits “1” and
“7,” which were clearly drawn. The results indicate that the
active learning method selects hard examples for query.

One of the reasons active learning algorithms perform
well is the imbalanced selection of examples across classes.
In our case, the method chooses more examples for the
classes which are hard to classify (based on how the
random example selection algorithm performs on them).
Fig. 9 demonstrates the imbalanced example selection
across different classes on the Caltech-101 dataset. On the
y-axis, we plot the number of examples correctly classified
by the random example selection algorithm for each class,
as an indicator of hardness of the class. Note that the test set
used in this case is balanced with 15 images per class. On
the x-axis, we plot the number of examples selected by the
active selection algorithm for the corresponding class from
the active pool. The data show a distinct negative correla-
tion, indicating that more examples are selected from the
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Fig. 6. Space exploration of active selection—BvSB-based selection is
almost as good as random exploration, while the former achieves much
higher classification accuracy than random.

Fig. 7. Active learning on the 13 natural scene categories dataset.

Fig. 8. The top row shows images on which the classifier is uncertain
using the BvSB score. The bottom row shows images on which the
classifier is confident. True labels are noted below the corresponding
images. We can see that the top row has more confusing images,
indicating that the active learning method chooses harder examples.



harder classes, confirming our intuition. Notice the empty
region on the bottom left of the figure, showing that active
learning selected more images from all classes that were
hard to classify.

4.10 Approximations to VOI

In the previous section, we showed how the proposed
uncertainty sampling measure can efficiently select infor-
mative examples for active learning. Here, we discuss some
approximations that substantially improve the running time
of the proposed VOI algorithm using the BvSB measure.
The VOI algorithm described previously in Fig. 3 is the
original algorithm on which the following approximations
are performed (line numbers refer to the algorithm).

4.10.1 Seed Sampling

Since VOI computation is relatively expensive, finding the
scores for all examples in the active pool is costly (line 3).
Instead, we use the BvSB measure to sample uncertain
examples from the active pool on which VOI computation is
performed. Typically, a sample of 50 examples is obtained
from active pools of thousands of examples. We observed
that even though BvSB and VOI do not correlate perfectly,
the top 50 examples chosen by BvSB almost always contain
the examples that would have been the highest ranked using
VOI alone. Quantitatively, the results differ only 2 percent of
the time, and the difference in classification accuracy is
negligible. On the other hand, the computational speedups
achieved are substantial.

4.10.2 Expected Value Computation

In the VOI algorithm, estimating expected risk is expensive.
For each unlabeled image, we need to train classifiers
assuming that the image can belong to any of the possible
categories (line 4). This can be slow when many classes are
present. To overcome this, we make the following
observation: Given the estimated probability distribution of
an unlabeled image, it is unlikely to belong to the classes that
are assigned low probability values, i.e., the image most likely
belongs to the classes that have the highest estimated
probabilities. As such, instead of looping over all possible
classes, we can only loop over the most likely ones. In
particular, we loop over only the top two most likely classes as
they contain most of the discriminative information as

utilized in the BvSB measure. Such an approximation relies
to some extent on the correctness of the estimated model,
which implies an optimistic assumption often made for
computational tractability [15]. Further, we can use the same
“top-2” approximation for computing the expected risk
(line 9) on unlabeled images as an approximation to (1).

4.10.3 Clustering for Estimating Risk

In the above algorithm, the risk needs to be estimated on the
entire active pool. Instead, we first cluster the unlabeled
images in the active pool using the kernel k-means algorithm
[45]. Then, we form a new unlabeled image set by choosing
one representative (closest to the centroid) image from each
cluster, and estimate risk on this reduced set. The clustering
needs to be performed only once initially, and not in every
query iteration. In our implementation, we fix the number of
clusters as 1/100 fraction of the active pool size. Experiments
showed that this approximation rarely (less than 5 percent of
the time) changes the images selected actively, and makes a
negligible difference in the estimated risk value and the
future classification accuracy.

With the above approximations, the complexity of each
query iteration is OðNk2Þ, a large improvement over the
original version. In Section 4, we propose a sublinear time
approximation for scaling to very large datasets.

5 EXPERIMENTAL RESULTS

In this section, we evaluate the proposed VOI algorithm on
various datasets described in Table 2. Scene-13 is a dataset of
13 natural scene categories [11], for which we employ GIST
features [31]. Precomputed pyramid match kernel matrices
[14] were used as features for the Caltech-101 dataset.

For implementation we used Matlab along with the
LIBSVM toolbox [5] (written in C, interfaced with Matlab for
SVM and probability estimation). With an active pool size of
5,000 images for a 10-class problem (USPS), each query
iteration on average takes about 0.9 seconds on a 2.67 Ghz
Xeon machine. For the Caltech dataset with an active pool of
size 1,515 images with 101 classes, a query iteration takes
about 1.3 seconds.

5.1 User Interaction Time

We have previously demonstrated the benefits of the BF
model as compared to MCF from the ease of interaction
standpoint. Here, we compare the total user annotation
time required with various methods to achieve similar
classification rates. The comparison shows the following
methods: our proposed VOI method with binary feedback
(VOI+BF), VOI with MCF, active learning using only the
BvSB measure (US+MCF), where US stands for uncer-
tainty sampling, and random selection with both BF and
MCF. Fig. 10 shows the substantial reduction in user
training time with the proposed method. For all the
datasets, the proposed VOI-based algorithm beats all
others (including active selection with MCF), indicating
that the advantages come from both our active selection
algorithm, as well as the binary feedback model. Further,
note that the relative improvement is larger for the Caltech
dataset as it has a larger number of categories. As such,
we can train classifiers in a fraction of the time typically
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Fig. 9. Y -axis: # examples correctly classified by random example
selection for a given class. X-axis: # examples of the corresponding
class chosen by active selection. The negative correlation shows that
active learning chooses more examples from harder classes.



required, demonstrating the strength of our approach for
multiclass problems.

5.2 Importance of Considering Annotation Cost

As mentioned before, we use uncertainty sampling (US)-
based active selection to form a smaller set from which the
most informative images are selected using VOI computa-
tion. Here, we demonstrate that the good results are not due
to uncertainty sampling alone. Fig. 11 compares the number
of binary comparisons the user has to provide in our algorithm
along with the BvSB uncertainty sampling method (also in
the BF model) in the initial stages of active learning. The
figure shows two plots with 50 and 70 class problems,
obtained from the Caltech-101 dataset. Our method
significantly outperforms US in both cases, and the relative
improvement increases with problem size. As the number
of classes increases, considering user annotation cost for
each query image becomes increasingly important. The VOI
framework captures annotation cost unlike US, explaining
the better performance for the 70 class problem.

5.3 Active Selection (VOI) versus Random Selection

Fig. 12 shows the confusion matrices for active selection
with VOI as well as random selection on the Caltech 101
class problem. Active selection results in much less
confusion, also indicated by the trace of the two matrices.
This demonstrates that the algorithm offers large advan-
tages for many category problems. Fig. 14 shows per-class
classification accuracy of both VOI and random selection
methods on the Scene-13 dataset. VOI achieves higher
accuracy for 9 of the 13 classes, and comprehensively beats
random selection in the overall accuracy.

5.4 Noise Sensitivity

In many real-world learning tasks, the labels are noisy,
either due to errors in the gathering apparatus or even
because of human annotation mistakes. It is therefore
important for the learning algorithm to be robust to a
reasonable amount of labeling noise. In this section, we
perform experiments to quantify the noise sensitivity of the
methods. We artificially impart stochastic labeling noise to
the training images. For example, 5 percent noise implies
that training images are randomly given an incorrect label
with a probability of 0.05. The algorithms are then run on
the noisy as well as clean data—results for the USPS dataset
are shown in Fig. 13.

The figure shows both active and random selection on
clean as well as noisy data (10 and 20 percent noise).
Expectedly, there is a reduction in classification accuracy
for both algorithms when noise is introduced. Interestingly,
however, even with as much as 10 percent label noise, the
active learning method still outperforms random selection
on clean data, whereas with about 20 percent noise, active
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Fig. 10. Active learning in the BF model requires far less user training time compared to active selection in the MCF model. US: uncertainty sampling,
RND: random. (a) USPS, (b) Pendigits, (c) Caltech-101 datasets.

Fig. 11. VOI-based active selection and uncertainty sampling (both with
BF) during the initial phases of active learning.

Fig. 12. Confusion matrices with (a) active (VOI), and (b) random
selection (max: trace ¼ 1;515). VOI leads to much lower confusion.

Fig. 13. Sensitivity to label noise, (a) 10 percent, (b) 20 percent. VOI with
noisy data outperforms the random selection with clean data.



learning still matches random selection on clean data. This
result shows that active selection can tolerate a significant
amount of noise while giving a high classification rate.

One reason why active selection can be robust to noise
arises from the fact that the algorithm selects “hard”
examples for query. In most cases, these examples lie close
to the separating boundaries of the corresponding classi-
fiers. Intuitively, we expect noise in these examples to have
a smaller effect since they change the classification
boundary marginally. In contrast, a misclassified example
deep inside the region associated with a certain class can
be much more harmful. In essence, through its example
selection mechanism, active learning encounters noise that
has a relatively smaller impact on the classification
boundary, and thus the future classification rate.

5.5 Population Imbalance

Real-world data often exhibits class population imbalance,
with vastly varying number of examples belonging differ-
ent classes [10]. For example, in the Caltech-101 dataset, the
category “airplanes” has over 800 images, while the
category “wrench” has only 39 images.

We demonstrate here that active selection can effectively
counter population imbalances in order to generalize better.
The experiment is conducted as follows: The active pool
(from which unlabeled images are selected for query)
consisting of a vastly varying number of examples of each
class is generated for the Pendigits dataset. However, the
test set is kept unmodified. In this scenario, random
example selection suffers since it obtains fewer examples
from the less populated classes. Active selection, on the
other hand, counters the imbalance by selecting a relatively
higher number of examples even from the less populated
classes. Fig. 15 demonstrates the results. The three bars
show (normalized) number of examples per class in the
unlabeled pool, and in the training sets with active and
random selection. Random selection does poorly—for
instance, it does not obtain even a single training image
from class “9” due to its low population in the unlabeled
pool. Active selection overcomes population imbalance and
selects many images from class “9.” This is further
reinforced by computing the variance in the normalized
population. The standard deviation in the (normalized)
number of examples selected per class with active and
random selection are 0.036 and 0.058, respectively. The
significantly smaller deviation shows that active selection
overcomes population imbalance to a large extent.

5.6 Fast Initiation of New Classes

In Section 3.4, we described our method of quickly initiating
new classes and then merging the erroneous ones using
agglomerative clustering and user feedback. Table 4
summarizes the advantages of the approach (i.e., with
clustering) compared to simple category initiation when a
new image does not match any training image (naive). We
start with a small seed set of 20 images and run the
experiment until both methods encounter all 101 categories
in the data. Note the large reduction in user training time
with clustering due to the fewer number of binary
comparisons requested. This aspect is increasingly impor-
tant as the number of classes increases.

6 SPEEDING UP ACTIVE LEARNING

There has been some recent work on scaling up active
learning to work with large datasets. In [44], a graph-
regularization approach is proposed to maximize the
expected information gain for scalable active learning.
Segal et al. [35] propose an approximate uncertainty
sampling approach in which only a subset of samples are
evaluated at each iteration for active learning. Their
approach provides speedups for the application of labeling
e-mail corpora. A hierarchical sampling approach along
with feature space indexing was proposed for scaling active
learning to large datasets by Panda et al. [32].

In this section, we show initial results with a different
approach to speeding up active learning via locality
sensitive hashing (LSH) [19]. As opposed to previous work,
our method does not modify the active selection criteria and
can work with any classifiers. Instead of performing an
exhaustive search with a linear scan (LS) of the entire
unlabeled pool, the main idea is to first find representative
samples that are informative (for seeding the search)
according to our active selection measure. Using locality
sensitive hashing on these samples, informative samples
from the unlabeled pool are obtained (in time scaling
sublinearly with the pool size). This approach provides up
to two orders of magnitude speed-up on the linear scan active
learning version, while making little difference in classifica-
tion accuracy. We can thus scale the algorithm to datasets
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Fig. 15. Population imbalance: VOI selects many images, even for
classes with small populations (see text for details).

TABLE 4
User Training Time Required to Encounter All 101 Classes

Fig. 14. Per-class accuracy of VOI versus random on the scene-13
dataset.



with hundreds of thousands of samples. With a pool size of
50,000 images represented in 384-dimensional space, the
LSH-based approximation provides a 91-fold speedup on

average with negligible reduction in classification accuracy.
In the following, we provide a brief introduction to LSH
using p-stable distributions [6], followed by its application
in our active learning algorithm.

6.1 LSH with p-Stable Distributions

Definition 1 [19]. An LSH family H ¼ fh : S ! Ug is called
ðr1; r2; p1; p2Þ-sensitive for distance d if for any u; v 2 S,

. if u 2 Bðv; r1Þ, then PrH½hðuÞ ¼ hðvÞ� � p1,

. if u 62 Bðv; r2Þ, then PrH½hðuÞ ¼ hðvÞ� � p2,

where Bðq; rÞ indicates a ball of radius r centered at q. If p1 >

p2 and r1 < r2, the family H can be used for the ðR; cÞ-NN
problem [19] wherein one has to retrieve points p such that

dðp; qÞ � cR if there exists a point in P within distance R from
q. The basic idea is that the hash functions evaluate to the same
values with high probability for points that are close to each

other, whereas for distant points the probability of matching
(collision) is low. The probability gap can be increased by
concatenation of multiple hash functions chosen randomly
from the family H.

6.2 Sublinear Time Active Learning

Here, we propose a simple way to speed up active learning
using LSH. During preprocessing, we first hash all the points
in the database3 to the respective buckets using the chosen
hash functions. At each iteration, we pick the samples from
our training data that give the highest VOI assuming they are
unlabeled. These samples are treated as informative seed
samples that will be used as queries to retrieve the nearest
neighbors from the active pool, in the hope that they will also
be informative. Since the training set is usually orders of
magnitude smaller than the unlabeled pool, a linear scan to
choose best samples from it does not slow down the
algorithm. Also, other seeding strategies that do not require
a scan could easily be employed instead.

Assuming that the VOI function is spatially smooth, the
rationale behind choosing the nearest neighbors of the
points with high VOI is to find other unlabeled points with
high VOI. Intuitively, many functions that capture informa-
tiveness of samples, such as distance to hyperplane, etc., can
be reasonably assumed to be smooth so that such a search
will lead to useful samples for active learning. Furthermore,
note that the proposed strategy does not depend on the
choice of the classifier or the active selection measure used.
It can be employed for other classifiers as well as other
selection measures seamlessly. The hashing method as
proposed requires the explicit feature vectors of the data
samples, and as such cannot be used directly for kernel
matrices. Extending to kernels using kernelized LSH [27] is
an interesting direction for future work.

6.3 Experiments with Hashing

Experiments are performed on two datasets: the USPS
dataset used previously and the Cifar-10 dataset [26], which
is a collection of 50,000 training images and 10,000 test
images obtained from the 80 million tiny images dataset [40].
For Cifar-10, 384-dGIST descriptors [31] are used as per [26].

Our algorithm relies on LSH retrieving points that are
close to the query points with high probability. Here, we
first perform an experiment with the Cifar-10 dataset to
analyze how efficiently nearest neighbors are retrieved by
LSH. The setup is as follows: For each iteration, a random
point was selected as the query. The LSH and LS were run
to find the near neighbors of the query, while noting the
time required for both along with the distance to the nearest
neighbor found (LS finds the true nearest neighbor). The
distance to the nearest neighbor found by LSH is normal-
ized by the distance to the true neighbor to find the
approximation factor c ¼ 1þ �. We ran 1,000 such iterations
and the resulting speedup values were put into five bins.

Fig. 16a shows a plot of the approximation factor
achieved versus speedup. As expected, we see that a higher
speedup gives worse approximation. The speedups, how-
ever, are large across the entire spectrum of approximation
values, achieving a 400-fold speedup for a 0.2-approxima-
tion (c ¼ 1:2). Note that the approximation guarantees for
LSH are conservative, and we observe significantly better
performance in practice. Furthermore, since the LSH
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3. It is shown in [6] that the hash functions ha;bðxÞ ¼ ba�xþbr c, where each
element of a is sampled from Nð0; 1Þ and b chosen uniformly from ½0; r�,
represents an ðR; cR; p1; p2Þ-sensitive LSH family for the euclidean distance
measure.

Fig. 16. (a) Speedup achieved with LSH over LS for the approximate near neighbor problem on the Cifar-10 dataset. c ¼ 1þ � denotes the
approximation factor. (b), (c) Active learning with the LSH approximation gives little difference in accuracy compared to the LS. (b) USPS dataset,
(c) Cifar-10 dataset. On average, the speedup for USPS was 17-fold, while that for Cifar-10 was 91-fold.



algorithm scales sublinearly with data size, we expect the
speedups to be even larger for bigger datasets.

It is important to note that even a crude approximation to
nearest neighbor does not necessarily hurt active learning.
Active selection measures are typically based on computa-
tions of potential informativeness of the data sample which
are often approximate, and are heavily dependent on the
current model. As such, even points that are not the nearest
neighbors to informative queries might have very close (and
sometimes even better) informativeness scores than the true
nearest neighbors. Our experiment below demonstrates that
this is indeed the case: An approximate nearest neighbor
often makes no difference in the informativeness values of
the chosen samples as well as in the final classification
accuracy achieved.

Figs. 16b and 16c show classification accuracy compar-
isons between LS and LSH active learning algorithms. In
both plots, the difference in accuracy due to the approxima-
tion is very small, whereas the LSH-based active learning
algorithms run about 1 and 2 orders of magnitude faster,
respectively, on USPS (	 5;000 samples) and Cifar-10
(	 50;000 samples). As mentioned before, the speedup is
expected to increase with the dataset size since the linear
scan takes OðNÞ time, whereas LSH-based active learning
runs in expected time OðN�Þ with � < 1. This demonstrates
the powerful scaling ability of the locality sensitive hashing
approach to active learning.

7 CONCLUSION AND FUTURE WORK

In this paper, we proposed a multiclass active learning
framework using only binary feedback. A value of
information algorithm was developed for active learning
in this framework, along with a simple and efficient active
selection measure. The feedback modality allows very
efficient annotation in multiclass problems and thereby
substantially reduces training time and effort. Further, we
presented results using locality sensitive hashing to speed
up active learning so as to achieve sublinear time scaling
(w.r.t. dataset size) for choosing a query. The proposed
modification achieved two orders of magnitude speedup
with little difference in classification accuracy. Future work
will focus on batch-mode sampling and further improving
scaling to allow thousands of data categories along with
millions of samples.
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